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A formalism is developed for calculating the complex refractive

index of a monatomic gas as a function of frequency in the.region of an
C
7 absorption. rhe treatment involves a direct study of the 'properties of

D the dressed photon state in the gas, and includes effects due to trans-

lational motion of the atoms as well as the dipolar "resonance" interac-

c Cl) tions between them. It is necessary to assume that the electromagnetic

properties of the gas are describable in some detail by a linear frequency -

and wave number-dependent susceptibility. A set of coupled nonlinear

integral equations are derived which together determine the susceptibility

~ function and hence the observable refractive index. The "static" limit of

large atomic mass is considered in some detail, and a first correction to

Sit is also obtained. The results are compared with measurements by

Tomiser on the linewidths of the sodium D-line at various temperatures

Sand pressures. We obtain qualitative agreement, while previous theoret -

3
ical linewidths were too small by a factor of order 10 .

Work supported in part by the United States Air Force Office of

AUG 2q~i Scientific Research, through Contract No. AF 49(638)-940. _ -

+ I. E. Du Pont de Nemours Research Fellow, 1959-60; supported by -k'; A

AFOSR, 1960-62.

Present Address: Tokyo Women's Christian College, Tokyo, Japan.

National Science Foundation Cooperative Fellow.

4



-20

I. INTRODUCTION

The problem of calculating absorption line shapes in monatomLc

gases, especially the contribution of the dipolar "resonance" interactions

between different absorbers, has been attacked Ln the past in several

different ways, all of a more or less ad hoc nature. The various methods

("collision", "statistical") are in agreement among themselves at least

as to the qualitative features of the line shape, and as to the order of

magnitude of the iHnewidth. However, it appears to have gone largely

unnoticed that they are in strong disagreement with the latest experimental

results. 2, 3 In particular, the calculated "resonance" width I is too small

by a factor of the order of 103 to fit the experimental data, and the Doppler

width is also much too small to account for the observed effects. (Moser

and Schultz 3 give a detailed comparison of the theoretical results with

their own and other experiments. )

One of us 4 ' 5 has developed a theory of the line shape which begins

from the more fundamental point of view of actually studying the properties

of the stationary states of the quantum mechanical system composed of

radiation field and matter. This theory, however, considered each absorber

to occupy a fixed position in space, so that effects due to the motion of the

atoms were left out. The original formulation depended on the use of

R. G. Breene, Jr., Revs. Modern Phys. 29, 94 (1957)

2 . Tomiser, Acta Phys. AustrLaca 8, 198 (1953); 8, 276 (1954); 8, 323

(1954); 9, 18 (1954).

3 H. Moser and H. Schultz, Ann. Physik_7, 243 (1959).

4 C. A. Mead, Phys. Rev. 120, 854 (1960).

5 C. A. Mead, Phys. Rev. 120. 860 (1960).
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6
"domping operators" , but more recently the results have been rederived

by means of a simpler formalism, and at the same time brought into rough

agreement with experiment.

The purpose of the present artLcle is to remove the defect of neglecting

the translational motion of the absorbers, and also to discuss in somewhat

more detail than before the comparison of theory with experiment. Our

method will be a generalization of that of reference 7; that is, we will

study the properties of the stationary states of the system but will also

assume that the system is describable by means of a refractive index.

This as'sumptLon will be generalized to take account of the possibility of
8

1spatLal dispersion". The plan of the article is as follows: In section

II, the notation is introduced and some preliminary matters discussed,

Including the "cutoff function" inserted in certain Hamiltonian matrix

elements which is supposed to represent roughly the effect of finite atomic

size and which later prevents certain integrals from diverging. In section

III, the basic assumption that the medium is describable in terms of a

refractive index is stated precisely as a statement about the stationary

states of the system. Section IV consists of the derivation of a set of

integral equations which determine the refractive Index. Section V dis-

cusses the "static limit" of large atomic mass (which corresponds to the

situation in references4, 5, and 7) and also the lowest order correction for

fLnLte mass. It is shown that under the conditions of TomIser's experiments

on Sodium 2 the static approximation should be adequate. Section VI gives

a more detailed comparison with Tomiser's results in the static limit,

6 C. A. Mead, Phys. Rev. 112, 1843 (1958).

7 C. A. Mead, Phys. Rev. 128, 1753 (1962).

8 J. Neufeld, Phys. Rev. 123, 1 (1961).
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including the effect of the spLn-orbit splitting. We give a detailed

comparison only with TomLser's experiments on the Sodium D-line; the

situation with the other experiments of references 2 and 3 is qualitatively

similar. A brief discussion of the cutoff function used is given in an

appendix.

A subsequent paper by one of us will discuss another method for

obtaining values for certain integral properties of the line shape, including

corrections for the failure of one of the assumptions of Sec. III.

II. NOTATION AND HAMILTONIAN

Our system consits of N identical absorbers, each with mechanical

mass m, distributed in a volume V, within which the radiation field is

required formally to obey periodic boundary conditions. In the "initial"

state I 0>, each atom ,A has a momentum 4iA assigned to it, and the

number of atoms with momentum Ln a given region of wave-number space

is described by a Boltzmann distribution at some temperature T. For the

sake of definiteness, the ground electronic state of each atom is considered

to be a nondegenerate s-state, and the only excited level (or at least the

only one of interest to us) is assumed to be a triply degenerate p-level.

The energy difference between the two levels is K v o . A given state of

the system of radiation field plus matter may differ from the state I O> in

one or more of three ways: (1) There may be a photon present; this is

denoted by a greek letter, e.g. X denotes the presence of a bare photon of

wave numbertt' and polarization C. (2) One or more of the atoms may

be excited; this is indicated by a capital Latin letter denoting which atom is

excited, with a subscript giving the direction of " 'polarLzation"t (electric

dipole moment matrix element between excited state and ground state).

Thus A. represents the excitation of atom A, with dipole moment matrix
L
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element in the i-direction (i = x, y, z). (3) One or more of the atoms may

have acquired a momentum different from that assigned to it in the state

, 0>. )' (A) indicates that atom A has an excess momentum4.4 , so

that iLts total momentum is + . ) " The way in which these symbols

are combined in specifying a state is best explained by means of a few

examples of states represented in our notation and with their properties

also written out in words:

(A)> Photon present with wave number /C and polar-

ization atom A has excess momentum It;

all other atoms as in state 10 .

fAA&(A) (B)>: Atom A excited, with "pblarization" in i-direction;

atom A has excess momentum 4k, ; atom B has

excess offi,; all other atoms as in state I0>;

no photons present.

Ve are interested in constructing the "dressed" photon state

X >, which is an eigenstate of the complete Hamiltonian with energy

4 . (vX = c K.), and which in some sense approaches the bare photon

state I X.> in the limit of zero interaction. We assume that I X> can

be built up entirely out of two kinds of states:

(1) States with one photon present, and no electronic excitation.

(2) States with one and only one atom excited, and no photons

present.

States coming under categories (1) and (Z) may still, of course, include

any combination of excess translational momenta for the various atoms.

Other states, such as two-photon states and states with several atoms

excited, may be included later by means of perturbation theory, if desired.
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The approximation of ImitLng ourselves to the states of types (1) and (2)

should hold in the frequency region v X Vol which is the region we are

interested in here. It could be made more formally precise by means of

the Arnous-Bleuler transformation, 4, 9,10 but this would make some of

the subsequent manipulations more complicated so it was decided not to

use it in this article.

9 E. Arnous and K. Bleuler, Helv. Phys. socta 25, 581 (1952).

10 W. Heitler, The Quantum Theory of Radiation (Oxford University Press,

New York, 1954), 3'rd ed, pages 348-353.

The refractive index can be thought of as describing the propagation

of the electric field matrix element

/ , IE( , )I > =.! y<oJIE ( R)I VJ>.

This immediately leads to a difficulty: It would appear that because of

momentum conservation(2 I.> 0 unless ,' = X . This would

mean that

<0O E (R) I -X> ~ exp(.& P, )s

corresponding to a refractive index of unity. This problem does not arise

in the situation treated in references 4, 5, and 7, since there the momentum

conservation is spoiled by holding the atoms fixed. This apparently hope-

less difficulty really is the result of a rather trivial effect: Momentum is

indeed conserved when an electromagnetic wave propagates through a

medium with altered wave number, but the excess momentum is caken up

either by the medium as a whole or by the walls containing the medium.

Since explicit inclusion of the effects of the walls in a calculatLon is not
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feasible, we will treat the excess momentum as belonging to the medium

as a whole. From this point of view, the propagation of the field should be

considered relative to the center of mass of the medium. Therefore, in-

stead of

~ (si exp(iL..R) + s% exp(-iNZ'R)}

(where sl and s? are respectively destruction and creation operators,

apart from constants), we use

E(r) = E (J o(+

- =Z 7£ , exp( Lt., -r)IF axp(l r + [-k r~ij) JTAexp(- r

When E(R) is applied to a state, it not only creates (destroys) a photon,

but also alters the momenta of all the atoms by a small and equal amoubt

in such a way that total momentum is conserved. From now on, therefore,

when we write down a state it is to be understood that, in addition to the

photons, excitations, etc. specifically noted, the state also includes an

additional superimposed momentum of the entire medium (equally divided

between the N atoms) such that the total momentum of the state is zero.

With this understanding all the states we are talking about have the same

momentum, and we can study the propagation of

There will be no need to mention this explicitly again. Indeed, most of the

subsequent manipulations could be gone through formally without performing

this trick at all, the only. trouble being that they would be meaningless

due to both sides of the various equations being zero. The energy associated

with this superimposed motion is, of course, negligible in the limit N-.,,.

VWe now give some typical Hamiltonian matrix elements. All the

ones we will need will differ from these at most by the presence of an
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excess momentum on an atom appearing on both sides of the matrix

element and having no effect except to shift the energy in the case of a

diagonal matrix element. The energy of the state O O> is taken as

zero. We obtain the following matrix elements for the Hamiltonian

operator 4 :

<A, L' (A)I//)VAL,/i)> = M[o+(q , /t] , ()

where

[ + t2] (2)

1>= -" (3)

AiZ "(=Vo ,( &?('zt); (4)

<Al L. A(A))J /j/(B), (4:j -. (A) >= -/ 2 (-) (5

In equations (4) and (5), A is the absolute value of the dipole moment

matrix element for the transition, and G( )(,) is a cutoff factor which we now

pause to discuss.

Our state 0 > has each atom in a definLte momentum state, and

we are not incldding any interactions in which two atoms can exchange. -. ,,-

momentum with both remaining in the ground state; that is, we are neglect-

ing direct interactions between atoms in the ground electronic state. If

these interactions were included, their main effect would be to introduce a

correlation in the positions of the atoms such that the distance between the

centers of mass of two atoms can never be less than an atomic diameter.

We take this into account by altering the interaction so that, while atoms

are formally permitted to approach each other arbitrarily closely, they

are not permitted to exchange electronic excitation except at distances
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greater than the atomic diameter r In this way, the transfer of excitation

should proceed just as if there were no pairs of atoms closer to one another

than r0 . In momentum space, this means that the momentum transfer

accompanying the exchange of electronic excitation should not be greater

in order of magnitude than4i(i/r 0 ), and this is embodied in the factor

G (,t ). Thus, G is a function which is nearly unity when A -C< /r 0 , and

becomes very small or zero when Z >lI/r o . For the Gaussian cutoff

factor used later on in this article, a way of relating the momentum space

cutoff to a particular value of r0 is given in the appendix. This prescription

is not unique, however.

We will use the remainder of this section to dispose of one more

preliminary matter. Later on we will have occasion to evaluate the quantity

W = 1im < ,/ > 2

S " + 1 (6)

In situations of interest to us here,

I , V. 1 .- V.

Thus, we can estimate W by replacing v X by v . With this replacement,

however, Re W is just the second-order transverse self-energy of the state

j Ai;) (A)>,and may therefore be absorbed into vo by renormalizatLon. If

we also assume

and remember that G(v 0 /c) 1 1, then we get (replacing the sum over YL by

integration)
3'w = 2 o 2(7

c
Z v 0
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where a- is the natural linewLdth. In what follows, we will always use (7).

The approximations involved are: (1) Negfectof recoil corrections to the

natural ILnewkdth, which are small and can be included if desired; (2)

Neglect of of the dependence of Im W on v.0 which is also very small in

the frequency region of interest; (3) Neglect of the cutoff-dependent Re W

when v. / vo . The formal justification of this requires the Arnous-Bleuler

transformation. 49, 10 If the reader will accept this one result, he will be

spared the complications that this transformation would introduce In the

subsequent manipulations.

III. BASIC ASSUMPTIONS

Classically, one may expand the electric fLeld K and Polarization

P in Fourier series as follows:
M

E(r, t) = dv P~ (V) A exp ,[4 -r - vt .

Here the notation 4 represents a wave number '.C. and a polarization unit

vector 1k4 ; for each wave number there are three polarizations, two

transverse and one longitudinal. The allowed wave numbers are those

compatible with the periodic boundary conditLons.

The requirements that the medium be isotropic and describable by

a refractive index (but with the possLbUlty of "spatial dispersion") may be

expressed by

4w P~ (v) = F (v, AC f~) E4 (v), (0)

where F is a function depending only on the frequency v, the absolute value

At of the wave number, and whether the mode 4c is longitudinal or trans-

verse. We will also use the notations F t(v, K ), FI(v,X ) to indicate the trans-



verse and longitudinal susceptibilities respectively.

Quantum mechanically, E and P become operators, but other-

wise the situation is unchanged. In the Schrodinger Picture, the frequencies

are to be replaced by energy differences divided by 4K, and we have different

equations for the various matrix elements of the operators. A quantum

analog of eq. (8) is

o/ 0I 4 w P- A4 N > -F < 01 E.C I _X>- (9)

it will be convenient to rearrange (9) slightly before using it. We

notethat

E = E -AA ycoul c

where E is the electrostatic longitudinal Coulomb field, and A is the
Scoul %A

transverse. vector potential (we use Coulomb Gauge throughout). We also

have

1. _ IX > X2 <0 (10)

Hence if we define

~i=E + LV) A,
A, ~coul -

c

then we can combine (9), (10), and (11) to obtain

<0I4 . X> vX " (12)

Eq. (12) is the expression we will use for the requirement that the medium

be describable by a refractive index.

It is also useful to notice that the electrostatic dipole-dipole inter-

action, whose matrix element is given by (5) may be written as

- il B = -c .,ou (B .A),
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wherejU, is the electric dipole moment operator of atom A and E

(B,A) is the electrostatic field produced by atom B at the position of atom

A. We can therefore write

-~ 0c Bj, , (B) >.

We also note that eq. (4) can be rearranged as follows:

-= , jAC <0/>

since we are interested only in the situation where

I V), coI < < V 0 . (15)

In order to obtain a closed set of integral equations to determine

the functions F, we will also need a stronger assumption which L a gen-

eralization of (12):

(16)

(A)6

(.A I ' 4w PJ l X > .C,,, -f q,,,, (,,) 6'<+"z,+. €,Z.C.l >.

where p(A) is the polarization of the medium due to all atoms except atom
IN,

A. To understand the meaning of (16), suppose that the initial state of atom

A is not known with certainty, so that the "initial" state of the medium is
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not simply 10 >, but

10,> 0 10> + ut (A)>

Now the matrix element <O'1 1X> will have a term of frequency v.

, . e eal to ,*<, (Wjand a similar situationwil hold for

P(A). Equation (16) expresses the assumption that the polarization of the

rest of the medium is still related to the field (which now includes contri-

butions from the virtual excitations of atom A) by the same susceptibility

function. Eq. (16) does represent an approximation beyond (12); Classically,

we can always limit our considerations to a linear susceptibility simply by

making our fields arbitrarily small; but in quantum mechanics we cannot

make the matrix elements appearing in (12) become small. Their values

are fixed by the solution of the eigenvalue problem. Nevertheless, we can

define a function F by means of (12), and this will lead to no contradictions

as long as we restrict ouselves to those matrix elements in (12). Moreover,

this is the obvious quantum mechanical analog to the classical procedure of

allowing the fields to approach zero: the one-photon state is as close to

zero as we can get and still have any field at all. Strict linearity would be

expressed by requiring that expressions such as (12) hold for all matrix

elements of the operators involved, and in particular for those appearing in

(16). Hence, (16) is a stronger linearity assumption than (12). In this

article we will assume that it holds, but in the next article it will be shown

how the failure of (16) to hold exactly can lead to changes in the value of the

function F appearing in (12).
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IV. INTEGRAL ECIUATIONS FOR F

In order to find expressions for the various matrix elements

appearing in eqs. (12), (16), we must know something about the dressed

photon state ) X> . Denoting general states by a, b, etc., we have

t(V.-a V a )<a)"> = b*Ia <I'PIb ><b I. ,  (17)

where,i v a is the energy of the zero-order state / a> . The appropriate

"fretarded" solution of (17) is

<a 4 (vX- Va+ S)-lCb*<a IJRib><bl > (18)

in which the limit S --- * 0+ is always understood.

Now let us examine some field and polarization matrix elements.

If i is a transverse mode, so that there are photons of type , we

have

<0 I - > = 0 1 X1  X > (19)

For the polarization we have

P =r r' *.4 A P

PT- -* P(r)exp(-L . )d r

V A 6t

- 1 4A~P~A~Aex(4 4
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so that

4/0 1 4vPYJi~> = A\ 0/ 4wRP.y 'Ai, It I(A) >< Aijh'1 (A) >~

- f- &A j~ <A, (A) )>. (20)
V

Here and henceforth a summation over repeated coordinate indices j, k,

etc. is understood. We will now apply (17) to a a> Aj,A&'y (A)>

and also use (14). The result is

+t(.'- ~A -~ <A ih Aj§ '7 ()Y 9 4  (Ali~ ~ i>
I"A (20a)

(I)

+~BA~cAi.k()J(74. )(A ),,(B) XB(B

Here the last summation goes over all longitudinal modes C_ , and we have

defined

) v -V 0

We now apply (18) to the state / a> = -)(' )(A) ,and also

use eqs. (6), (7), and (19). The result is

(21)

41Iw -K (q\ q)]<Aj,.2(A)Ij-> = "fr'(0Ic i->)iO(Aj. I.y(A) ->

+ ~~% ($ -()/';ti~ )(A),*, (B)Xf/. -Az&)(A)(B Ix>

The last summation now goes over all modes, transverse and longitudinal.

In arriving at (21), we have assumed that the omission of the one photon

mode 2 from the summation in (6) does not affect the result. The matrix
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elements of k are defined by

<Aj.& (A)/4l4&.(B). (A) )( Ao (A)IJ 1k 4. (B). (A )>

4- (22)

The first term on the right-hand side of (22) is nonzero only for longitudinal

modes, the second only for transverse modes.

We now make the followiLng definition:

Now eq. (23) can be inserted into (21), and the result solved or<Aj, (A)(B,(A

The restdt Us

<Aj, (Af)IC > = - K0 tI)>[W-t(q, )-Ajk ' (24)

A4

The matrix LI = (4.) - K - A )- is, of course, the inverse of the matrix

whose elements are

( v- K) -, j Q%,

It is now a simple matter to substitute (24) into (20), sum over l osing

the Boltzmann d lstribution, and solve eq. (12) for with the aid of the
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result. This gives the solution (z5)

F t( w --  _._.( _ ) exp (_ 2Cj[.r k(. . ,-- . ., J
4 V 1..

where

' and k is Boltzmann's constant.
2 mkT

We could have replaced the matrix product under the integral sign by

('7j Ujki 7 k = -LYk j Ujk kJ.
2

It wLalso be necessary to derive an expression analogous to (25)

for the longitudinal field. If 4 is a longitude mode,

> ( A(O1,6C /Aj, tC() Am

<o&A> AAAj, (A)(6

and

<01I4rPj> k,.~ -(7

vC > B CB) i>(27)

Now eqs. (17), (18) may be used much as before to give

K-w- k(q~.Q(k i&(B) / K> 4E (83kg (B1R~j()~
Af B-ZOK~k'A+BC(A

+ ~ ~~~ k, Z ) I, ()-Y() >( A1 /(4 (A), (04 )(B) ?>

A B. -1 J(A5
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By using (6), (7), (13), (22), (23) in a manner similar to the derivation of

(21), we easily find

-[w (q <6k)]<Bk. (B)I > _ O_
AA -<0 > (28)

+ 2 s)4/C ' B)(t1 4,g:B)X>e

in which we have also made the assumption that the omission of one atom

from the sum in (26) will not noticeably affect the result. Now one proceeds

just as in the derivation of (25): Solve (28) for <BkZC(B) I X >, insert

the result in (27), carry out the summation (replacing it by integration

over the Boltzmann distribution), and solve eq. (12) for FI. The result is
3/2f

FPJI ) ffi 4.jr)2 N& (A.) 3 exp(4 Oq - ) k [(A)- (q.A )-A(.,

Sd 3q. (29)

Eqs. (25) and (29) determine the two functions F if ajk can be

determined. We must now turn our attention to the evaluation of a . There

are (as far as we know) two methods for doing this. One uses a formal

infinite series expansion and is perfectly general if the series converges.

The other gives the result in closed form, but requires the assumption

(16) which has not been used up to now.

(1) Formal Expansion

By comparing eqs. (20a), (21), (23) it is easy to see that

06jk (Ld'*r A,) <A k ' )M (.A) I 'i >

<Ak.% (A)I1 I a ><a (30)

The summation goes over all states except I a> = i>. Since there is no

singular contribution from I ' >, it may be considered to go over all states.

The next step is to substitute (18) into the right-hand side of (30).

Then use (18) again to replace all the terms < bI Xon the right-hand
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side of the result, except for 1 b>- = A k , t (A) >, and repeat

this indefinitely. This gives

jk( , , < W&,AA;)/

a b 1(vx - v a + iT)

e a (Aj, . (A)l / a)<a I/Ak,' (A)><Ak , / 4 (a) -X >

(v+ i

a.

/,
+ J. P < <

a b(>Va + S

_______ ______k'___% (A)IA

a (vX  v a + S)

+ § <Ajt(A)/SaXaJ,'kb>b1qIA,.(A> k.A)I

a,b :2(Iv a+ is)(v ) vb + -- (31)

where a prime on a summation means that the three states /Ak ' (A)>

are to be ommLtted (k = x, y, z). By inspection of this series, we see that

A can be expressed formally as

jk

t-~ a~(v - jv + is')

SV""vS +(32)a b (v , . va + ,.S )(" . " b + is.
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The expansion (32) will be made use of in the following paper. For

the remainder of this article, however, we will make use of a formal closed

form solution which depends on the assumption (16).

(2) Closed Integral Equation Using (16)

We first consider the contribution of the longitudinal coulomb

part of to Ajk. Denoting this by a superscrlpk £ , and using eqs. (5),

(22), and (23), we can express this term as

(w, #6 qA) <A,, (A) (>

l 1,

where

F~(A = B* Kk,)ZC (B),(t.e(A 3)

and the sum over .C, of course, Lncludes only longitudinal modes. Using

(5), (13), and (33), we can now obtain

x+k.L B), A(&*4 )(A) >

I (A)

V A4F
(34)
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It is also evident that

(A= (35)

It is now a simple matter to insert (34) and (35) into (16) and solve for Q(A

I (A) %(~F[dJ(~ t) A%]- A ( ) I -X>

J ",-.(36)

1 +C,(y,)F [)- (q ' -. .
A

The next step is to substitute (36) into (33), replace the sum over 4. by

integration, and extract the value of Ljk" The result is

.z"q =
2 (r.-,)F[ - K(q,. - ),/c'] . d% 'I 1(,,.q) =A 2

jk
2w- + C=- (.)Fj[ W) - 1 (q, .- {-),,'

(37)

There is one more contrLbutLon to A k ' namely that due to the

transverse part of k . It can be written as

- k M /. "o ( (.<Ak, ) 1 X>

2 2

ZV v I [vX v (q A -~2 + Ls'

2 2 .t (A )

21 V V (,yy) j (38)

V (f7 v, I [v, v1 - (q A +~v L3 2

where

B ,tA kMM
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and we have used (22), (23), plus an obvious generalization of (4). We now

proceed much as in the derivation of (37). First, by using (4), (14), and

(18), we find

=<0 J~><I(&- & (A) I i>
t (A)

_ 0tI<l0 >1 2[ k<Ak',/t(A)I">+ p(3)

[v),-v / ' . - + L '

We also have, obviously,
t(A,)

(A(-)C,)()/4,P (A)-X> =4_ ' (40)

t(A)

Now one substitutes (39) and (40) into (16), solves for Iif , inserts the

result into (38), and again extracts the value of at The result Is

k (t,& , q)
ik 4 ' (41)

V4 2 1 I/k
'1o [ & jk /f ( &2 (.'.')F, ), [4]d

3A I

8 J c,-' 2 (vx c,' - /'I(q,- ) + 2

+ V0 2 a(-t')c 'Ft[w "/((q,.#- A'),. "0]

x (V,- cI.' - K(q, ,4-' + i5
where we have also used (4) and (14) to get the matrLx element of
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The matrix elements of a are now given by

L a' I3 +j at (42)

jk jk jk jk (42)

Equations (25), (29), (37), (41), and (42) now determine both functions F.

The observed refractive index ( is determined by the requirements that,

first, the electromagnetic waves propagating in the absence of macroscopic

charges are purely transverse; and second, that the usual relation between

wave length and susceptibility holds. Thus we write
2

(640) - 1 = FtlW. Cv' c) = Ft A oI0. (43)

The solution of (43) will in general require the analytic extension of Ft into

the upper half of the complex A. -plane.

V. STATIC LIMIT AND LOWEST ORDER CORRECTION

In the previous section, a set of coupled integral equations was

derived which in principle determines the refractive index if the assumption

(16) is valid. However, due to their highly nonlinear character (among other

things), it is evident that a closed form solution of the equations is not

feasible. Therefore, suitable approximations must be found. The reader

will remember that we are particulary interested in the experimental con-

ditions prevailing in TomLser's experiments on sodium vapor. It will be

recalled that the observed linewidth in these experiments was much greater

than the Doppler width, suggesting that the effects of translational motion

of the absorbers is not very important; this corresponds to the limit

m ->Go, which we call the "static limit. " This limit is also of interest

as a check on the work of references 4, 5, and 7, in which the absorbers

were considered fixed Ln given positions Ln space.
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In the static limit, all the quantities K become zero, and it Ls

easy to see that A becomes a scalar:

ajk - AS jk

Because a is a scalar, we also have

Ft = F F s ,

and it further becomes possible to assume that F s and a are both

functions only of ) . We have from (25), (29), (37), (41), (42) in the

static limit

Fa 4) = - N4__N_(44)

and

A (W) = -ia- + a((.) + t(w), (45)s

where

(L4) F s (W t )d (46)

and
4 2 2 3

at (w) = - 0 0 Z Fs((Ma) ( X/L)d3/A 2
ir2 3 s c2/C 2 , X - c& + i s)2 +___2 Fs())

t(c,%) x(V, -c/.r + i )

(47)

Equations (44) - (47) are essentially the same as the corresponding

equations in references 5 and 7. There are two main differences: first,

the use of the Arnous-Bleuler transformation brings about some small

alterations in the denominator of (47), which will be discussed in more

detail In the next section. Second, in the earlier work the cutoff function
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G was left out until the very end and then inserted only when it was needed

to prevent a divergence; hence, G does not appear in the analog of (47) at

all, nor in the denominator of the analog of (46). Neither of these differences

is very significant; the omission of the Arnous-Bleuler transformation and

the way of bringing in the cutoff are both rather arbitrary, nonessential

elements in the formalism. Since F is a function only of .), we have in

this limit = F (Q).

We would now like to discuss the lowest order fLnLte-mass cor-

rection to the static approximation, but thLs will be made easier if we first

make another approximation. A comparison of (37) with (41) and (7) shows

that

I t
Ak > > ' k.

This is because only the integral (37) requires the cutoff for convergence,

making A proportional to the third power of the cutoff wave number.

For the remainder of this section, therefore, we will set A equal to d
we will also omit the G in the denominator of (37) since, as pointed out

above, the way in which the cutoff is brought in is rather arbitrary.

Equations (29), (37) now become
(48)

= -n D( 'r) x(P? Kq.%d

"2 /&k
"J q)  I _.A... ,F[ :(q . ) , '..

1j" d3/,. (49)

where
D = AL 2 N

K V
z (50)

BK
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We now expand Ej and ij in inverse poweres of m, with the

intention of evaluating the zero- and first-order terms. We write

F(F s (W) + g((' ",) + ,.51)
m

and .

(W, 4  = +s(jk) + +--- (52)kM m

It will now be convenient to use a specific form for the cutoff function. The

choice made in this section is

G( /,. ) = exp(-.C 2 4
)

According to the prescription given in the appendix, this corresponds to a

cutoff radius of r 0 =

We now insert (51), (52) into (48) and (49), expand in powers of

(1/m), and equate coefficients of like powers. By equatLng the zero-order

coefficients we get

F D (53)

and

)(54)

1 + F s(d)

where

A--- 1_L.. 13/2

Equations (53), (54) can easily be solved, giving the result

F P) -(L+ D) + [(w- D) 2 - 4DA]1/ 2

155)
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According to (55), F S has an imaginary (absorptive) part in the region

-W - V <D 2 (DA)1 /2

In this region, of course, the square root is taken so that the imaginary

part is positive. In the regions to the left and right of the absorptive

region, it is seen by analytic continuation, or by physical requirements,

that one should take the negative square root on the left, the positive one

on the right.

Since Zc is of the order of an atomic radius, in a dilute gas

A>.> D.

Therefore, the denominator in (55) is a slowly varying function of W.J in the

absorptive region. If the denominator is considered approximately constant,

we obtain for the half-width at half-height

(A 3)A)/ 1/2 (56)
1/2= (3DA)l2 = ( _x)l/ 4 2A1 ( N )

Thus, the half-width should be proportional approximately to the square

root of the density of the gas.

When we equate coefficients of the first power of (1/m) in (49), we

get

_,2-2 .

A [I + F5 (4 )I

( 2 (5&

=~~)/ -& &2j +F~ ! 3Z~ 1 + S2 -'+~(A

3[l + F5(JJ (u Mj
(57)
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where

.5(W) = $6.Z(I g ((Jz) d-~ t (58)

In arriving at (57), we have made use of eq. (2) for K. The prime on

Fa denotes differentiatLon wLth respect to L) . We can now insert (51)

and (57) into (48), expand, and equate coeff L cLents of (I/rm):

gp. AP) = a(',a) + b(-))& 2 + c(J))h ((W)), (59)

where
I 3/2a((,J) = - D B Fs ( ))

- ) [ + F S(())]
2  8 722

b(w) = + B F (3+/ (60)

2[)- a., (.d)] I- 3[l + F( ) 2  24

c(W,-) = DB

3[ 1 + F s(W)]

To evaluatef((.,)), we substitute (59) into (58), getting

S (W) -56- 2(/.')[a(W) + b%&,,,),Z,.' 2 + c(()),D)d 3 /F..'

3/2 3 bC" ti.+3 i
[a() + + c()) ((a))J. (61)

2., 4.
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EquatLon (61) Ls now solvedfor! (lt):

( )3/2 [a(W) 3 b(W)
i--) __ 4 (62)

1 3/2

Equations (59), (60), and (62) determine g. Since a is still a scalar

in this approximation, we still have F t = F I Note that the result is still

independent of T.

We have calculated Im F t( , V /c) in both zero- and first-order

under the conditions of one of Tomiser's experiments on sodium. Ft is

sufficiently small in this case that we can neglect its dependence on wave

number. The following parameters were usead:

T = 688. 1 K.

P = 0. 503 mm Hg.

C= Z.83x10 " 8 cm
.j2i-35 3

2 4.167 x erg cm

"= 3.199 x 107 radians/sec

X= 2 Ir/v = 5.89 x 10 "5 cm.

The results are shown in figure 1. Obviously, the lowest-order correction

for finite mass has only a very small effect. If one looks closely enough

at the figure, one can see that the finite-mass correction slightly raises

the maximum of the line; it is therefore to be thought of as a narrow ng

effect. This can be understood qualitatively as follows: In the static approx-

imation, the line is broadened due to the transfer of excitation from one

absorber to another. This transfer may be accompanied by a momentum

transfer of any size up to the cutoff momentum. When the finite mass is

taken into account, however, excitation transfer accompanied by large

momentum transfer is inhibited due to the recoil of the atoms spoiling the

energy balance; i.e., excitation transfer with large momentum transfer is
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no longer a tresonance" process. This effect might be called "recoil

narrow Lng" 1.

The half width at half maximum from fig. 1 is (in wave length

units) 1. 48 A. The experimental values are 1. 565 A for the 3/2 line, and

1.075 for the 1/2. Thus, we are able to get qualitative agreement with

experiment with a reasonable value for oC . In the next section, we take into

account explicitly the doublet character of the line, making possible a more

detailed comparison with the experimental results.

VI. THE DOUBLET CASE IN STATIC APPROXIMATION

The sodium D-line is not actually a transition from a nondegenerate

s-level to a triply degenerate p-level, as assumed up to now. The transition

is actually from 2S to 2P, and the excited state has two components, 2P 1 / 2

2 0
and P 3 2 . The wave lengths of the transitions are respectively 5896 A

0

and 5890 A.

iA detailed derivation of the formulas for the doublet case would be

largely repLttLous. 'We will therefore content ourselves with rearranging

some of the formulas of the previous section for the static limit, and then

giving without proof the corresponding generalization to the doublet case.

The justification for the use of the static limit is the smallness of the lowest

order correction found in the previous section.

In the static limit we have (cf. (53))

€ D
- F = D (63)

(We can drop the subscript s from now on, since in this section we are

always dealing with the static limit. )

If we omit the G in the denominator of (46), andi4se (50) and (63),
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we f Lnd

B 1 _ B 2 3/2 3

( -, )

where again G = exp(-C2or 2 ). If instead we use a sharp cutoff in config-

uratLon space at a distance r0 , we find

I - 4 2 B 1 -(64a)
3 -- 3'-

0

In case of (47), we will have to rearrange the denominator some-

what to get the same result which was obtained in references 5 and 7 with the

aid of the Arnous-Bleuler transformation. This appears here to entail

approximations, but it is really more accurate than direct evaluation of (47)

would be. First, we omit all factors of G from (47), since they are not

needed to ensure convergence. With the notation CA,. = v, we can write the

denominator as

2
n( +V - V+ 0

2

Next we replace v x by v° ; it is further assumed that the main contribution

to the integral is from the region v A vo , so that v can be replaced by

I/2(v + Vo). The denominator now becomes

I IV2 - (V + i 9) 1VZl [- (0z2 2

With all these rearrangements, the integral is easily evaluated:

at a -Ic- (C-i) (65)
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Hence, by combining (45), (64a), and (65), we obtain

+ 4r 2 B 1

Equations (63), (66) can be solved for C for any value of w

In the doublet case the procedure is similar, though it is complicated

by the presence of the spin-orbit splitting. One may use either a simple

generalization of the methods of references 4 and 5, or of reference 7, or of

the earlier sections of this article. (Actually, we used the methods of

references 4 and 5). We denote the frequencies of the 2P 1 / 2 and 2P3/

transitions by v, and v 2 , respectively. Instead of (63), we find

S  D I + 2(67)
r 3  v x - -~ a ~ V - (67)

The equation for A remains formally unchanged: (66) still holds, with B

given by (50).,,A. is now understood as the orbital dipole matrix element in

which spin effects are neglected. We have neglected v I - V . against v I ,

so the natural linewLdth is treated as the same for both lines.

We have calculated the absorption curves for a number of points in
0

the region of Tomiser's experiments, using eqs. (66) and (67) with r0 = 8 A,

a value which is reasonable and seems to give good agreement.

In carrying out these calculations, it is convenient to define

v ° = l/2(v I + V2)

£= v2 - v1
2 C7

6 wc 3  N

0 V

Figure 2 shows a typical absorption curve, corresponding to

= 109.78 (T - 688.1'K, P = )0. 503 mm Hg. ) -The comparison between
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experimental and theoretical linewLdths is plotted in figure 3. It will be

observed that there is qualitative agreement for both components of the

doublet, even though the theoretical widths are approximately proportional

to the square root of the density (cf eq. (56)), while the experimental depen-

dence appears to be linear. The theoretical widths obtained by the methods

of reference I would be too small to be seen on a graph of the scale of fig.

3, so we are justified in claiming to have improved the agreement. In the

following article, it will be shown that the discrepancy which remains may

well be due to the failure of the approximation (16).

APPENDIX

We can introduce a cutoff into the ordinary electrostatic interaction

between two charge densities and by writing

3b

(A -i)

Here the sum goes formally over all -,t satisfying periodic boundary con-

ditions in the volume V. ( G = 1, we have the usual electrostatic interaction.

If, both charge distributions can be treated as 'dipoles, we make the replace-

ment exp- r ) 3

M M

and fLnd 4w A-2

•~ ~ "4 0. 4,4 !lp
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The matrix elements corresp-onding to (-.-2) are given by eq. (5). Now, we

can determine an appropriate choice of G just as well by looking at its effect on

(A-i) as by examining (A-2). In other words, we consider the effect of G on

the function

f7 ((r)) exp(,i & - r). (A-3)

The criterion we use for relating G to a cutoff radius r 0 is

r r L (r) =1, (A-4)
r ---W

and
t(0) = h/r0 . (A-5)

Thus (r) is to become constant as r becomes <e r0 , causing j in

(A-2) to become small; it is to behave as an ordinary electrostatic potential

for r >>r0 . If one inserts G = exp(-k .2 & 2) into (A-3), one finds (replacing

summation by integration, of course)

f (r) 1/r

1 (A-6)

From (A-5) and (A-6), we find

r 0 = .Cr W1 , (A-7)

which is the relation between the wave number and configuration space

cutoffs mentioned in sec. V. This prescription will also be used in the

following article. It is obviously not unique, however. For example, if

we required consistency between (64) and (64a), we would get a different

result.
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